Sign-changing solutions for critical equations with Hardy potential

نویسندگان

چکیده

We consider the following perturbed critical Dirichlet problem involving Hardy-Schr\"odinger operator on a smooth bounded domain $\Omega \subset \mathbb{R}^N$, $N\geq 3$, with $0 \in \Omega$: $$ \left\{ \begin{array}{ll}-\Delta u-\gamma \frac{u}{|x|^2}-\epsilon u=|u|^{\frac{4}{N-2}}u &\hbox{in }\Omega u=0 & \hbox{on }\partial \Omega, \end{array}\right. when $\epsilon>0$ is small and $\gamma< {(N-2)^2\over4}$. Setting $ \gamma_j= \frac{(N-2)^2}{4}\left(1-\frac{j(N-2+j)}{N-1}\right)\in(-\infty,0]$ for $j \mathbb{N},$ we show that if $\gamma\leq \frac{(N-2)^2}{4}-1$ $\gamma \neq \gamma_j$ any $j$, then $\epsilon$, above equation has positive --non variational-- solution develops bubble at origin. If moreover $\gamma<\frac{(N-2)^2}{4}-4,$ integer $k \geq 2$, enough sign-changing into superposition of $k$ bubbles alternating sign centered The result optimal in radial case, where condition $\gamma\neq not necessary. Indeed, it known that, > $\Omega$ ball $B$, there no small. complete picture here by showing $\gamma\geq \frac{(N-2)^2}{4}-4$, solutions These results recover improve what non-singular i.e., $\gamma=0$.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sign-changing Multi-bump Solutions for Nonlinear Schrödinger Equations with Steep Potential Wells

We study the nonlinear Schrödinger equations: (Pλ) −∆u+(λa(x)+1)u = |u|p−1u, u ∈ H(R ), where p > 1 is a subcritical exponent, a(x) is a continuous function satisfying a(x) ≥ 0, 0 < lim inf |x|→∞ a(x) ≤ lim sup|x|→∞ a(x) < ∞ and a−1(0) consists of 2 connected bounded smooth components Ω1 and Ω2. We study the existence of solutions (uλ) of (Pλ) which converge to 0 in RN \ (Ω1 ∪Ω2) and to a presc...

متن کامل

Multiple Solutions for Semilinear Elliptic Equations with Sign-changing Potential and Nonlinearity

In this article, we study the multiplicity of solutions for the semilinear elliptic equation −∆u + a(x)u = f(x, u), x ∈ Ω, u = 0, x ∈ ∂Ω, where Ω ⊂ RN (N ≥ 3), the potential a(x) satisfies suitable integrability conditions, and the primitive of the nonlinearity f is of super-quadratic growth near infinity and is allowed to change sign. Our super-quadratic conditions are weaker the usual super-q...

متن کامل

Solutions for semilinear elliptic problems with critical Sobolev-Hardy exponents and Hardy potential

Let Ω ⊂ RN be a smooth bounded domain such that 0 ∈ Ω , N ≥ 5, 0 ≤ s < 2, 2∗(s) = 2(N−s) N−2 . We prove the existence of nontrivial solutions for the singular critical problem − u − μ u |x |2 = |u| 2∗(s)−2 |x |s u + λu with Dirichlet boundary condition on Ω for all λ > 0 and 0 ≤ μ < ( N−2 2 )2 − ( N+2 N )2. © 2005 Elsevier Ltd. All rights reserved. MSC: 35J60; 35B33

متن کامل

Infinitely many solutions for a bi-nonlocal‎ ‎equation with sign-changing weight functions

In this paper, we investigate the existence of infinitely many solutions for a bi-nonlocal equation with sign-changing weight functions. We use some natural constraints and the Ljusternik-Schnirelman critical point theory on C1-manifolds, to prove our main results.

متن کامل

Sign-changing Solutions to Elliptic Second Order Equations: Glueing a Peak to a Degenerate Critical Manifold

We construct blowing-up sign-changing solutions to some nonlinear critical equations by glueing a standard bubble to a degenerate function. We develop a new method based on analyticity to perform the glueing when the critical manifold of solutions is degenerate and no Bianchi–Egnell type condition holds.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Analysis & PDE

سال: 2021

ISSN: ['2157-5045', '1948-206X']

DOI: https://doi.org/10.2140/apde.2021.14.533